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T
he adult human brain contains ~86 
billion neurons (1). Zooming into its 
cellular and subcellular details to 
reveal different aspects of neuronal 
connectivity is a key area of research. 
However, to link the different spatial 

scales from the synaptic level (at nanome-
ter range) through single neurons and glial 
cells (at the micrometer level) to the whole 
organ is most challenging. Recently, the con-
nectome of Caenorhabditis elegans, with its 
302 neurons, has been characterized, and a 
complete structural-functional model has 
been proposed (2). A comparable level of 
detail of the human brain connectome is 
still a long way off. As such, decoding the 
human connectome, the mechanisms of sig-
nal transduction, and relationships to brain 
function are linked to exponentially growing 
challenges in advanced computational and 
storage technologies,  which in turn may lead 
to creative solutions beyond neuroscience.

Challenges of scanning time, storage 
technology, and data processing do not 
start with studies of the human brain but 
are important considerations when study-
ing brains of vertebrates and even inver-
tebrates (see the figure). For example, the 
reconstruction of the synapse connectivity 
of an adult fruit fly brain, with ~100,000 
neurons, culminated in ~21 million camera 
images and a dataset of 106 terabytes (3). 
Recently, a fragment of the human cerebral 
cortex, a volume of ~1 mm3, was recon-
structed in three dimensions, correspond-
ing to a data volume of ~1.4 petabytes (4). 
Although 1 mm3 is a tiny portion of the ce-
rebral cortex and represents ~0.00007% of 
the total brain volume, a high-speed mul-
tibeam electron microscope was required 
to collect these data with a scan time of 
326 days. Such research is conducted with 
the motivation that insights into the de-
tailed architecture of the brain may reveal 
a new understanding of cortical networks 
and provide new quantitative data that de-
scribe tissue properties, with implications 
for brain activity.

This type of analysis of human brain tis-
sue is an important complement to stud-

ies of brains from other species because 
there are considerable differences between 
them, particularly connectivity. For ex-
ample, the volume of white matter of the 
cerebral cortex, which contains axons that 
support long-range connectivity, increases 
faster during mammalian evolution than 
gray matter (which contains neuronal cell 
bodies) (5). The ratio of long to short con-
nections has consequences for electrophys-
iological properties and, thus, for brain 
function (6). However, studying the full 
extent of axons and their synapses, which 
may be several centimeters from their cell 
bodies, represents a much more substan-
tial problem in human brains than in those 
of rodents or invertebrates. 

Magnetic resonance imaging (MRI) (e.g., 
diffusion MRI) is capable of addressing long-
range connections and revealing connectiv-
ity patterns, including functional connec-
tivity in the living human brain, but image 
voxels are in the millimeter range. This is far 
above the spatial resolution necessary to de-
tect single axons and therefore is prone to 
lead to ambiguities inherent in tract recon-
struction (7). Moreover, brain connectivity 
includes phenomena such as collateraliza-
tion (one axon may target multiple areas), 
convergence, reciprocity, or spatially sepa-
rate dendritic arbors, which are considered 
key in understanding connectivity (8) but 
are not accessible with MRI. 

Consequently, there is a discrepancy 
between macro- and microconnectome 
scales (9). Different approaches have been 
proposed to bridge the two worlds: For ex-
ample, a combination of diffusion MRI and 
high-resolution optical imaging of fluores-
cently labeled neurofilaments in brain tis-
sue cleared using the CLARITY technique 
has recently been explored in the same tis-
sue block to allow more robust multimodal 
MRI-CLARITY comparisons (10). In another 
study, a tissue block from the human hip-
pocampus was imaged with anatomical and 
diffusion MRI, three-dimensional polarized 
light imaging [3D-PLI; (11)], and two-photon 
fluorescence microscopy to bring together 
information of the fiber architecture of the 
hippocampus at different spatial scales and 
to represent it in a common reference space, 
the BigBrain model (www.ebrains.eu). These 
data show the perforant pathway, which 
does not represent a uniform tract but rather 
a multicomponent system that originates in 

the entorhinal cortex with many thin axon 
fiber bundles (in the range of 20 mm) and 
projects to the cornu ammonis and subicu-
lum (12). 3D-PLI is a microscopic technique 
that allows decoding of the fine architecture 
of the perforant pathway, which has a cen-
tral role in learning and memory, as well as 
in the pathogenesis of Alzheimer’s disease. 
Methodologically, the combination of differ-
ent techniques helps to cross-validate find-
ings. Practically, it paves the way to combine 
high-resolution region-of-interest analysis 
with whole-brain studies. 

Atlas methods can, in a systematic man-
ner, serve as a bridge of macro- and mi-
croscales by integrating data from ultra-
high-resolution studies of single cells and 
their connections to small regions of inter-
est into a common microscopical reference 
space. BigBrain represents such an ana-
tomical model at 20-mm isotropic resolution, 
which is slightly higher than the resolution 
required to see details of cell morphology. 
It is based on 7404 histological, cell body–
stained sections; the original dataset is ~1 
terabyte (13). BigBrain provides a template 
to integrate findings of cortical layers and 
even sublayers with data on whole-brain 
structure, connectivity, and function. Data 
integration in an atlas combines the advan-
tages of a bottom-up approach that starts 
with cellular characteristics and connections 
to build up to the macroscopic scale with the 
advantages of a top-down perspective that 
starts with behavioral function and under-
lying large-scale networks to better under-
stand the properties of components, that is, 
cells and their circuits. Both approaches are 
required to provide mutual information and 
to constrain predictions. 

It is a gigantic challenge to process and 
analyze entire human brains at cellular reso-
lution. At present, it is not within reach to 
go down to individual axons at the whole–
human brain level. However, what would it 
mean computationally to track axons at the 
whole-brain level, assuming for simplicity 
that an axon connects two neurons? To com-
pute the course of fibers at the whole-brain 
level in the millimeter range based on diffu-
sion MRI of postmortem brains would mean 
to optimize 4 × 105 spin directions. This will 
require ~130 megabytes of storage and 1 day 
of computation time on a desktop computer. 

The analysis of axons at the level of 60-mm 
isotropic resolution for a whole human brain 
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using 3D-PLI (11) would require 8.3 terabytes 
of storage and several years on existing su-
percomputers to optimize 2 × 1010 spins. Such 
large datasets also create substantial chal-
lenges for the visualization of data. Paraview, 
for example, based on the open-source soft-
ware VTK (www.paraview.org), can use paral-
lel graphics processing units (GPUs) and has 
been applied to render and visualize 3D-PLI 
data. Going further and optimizing fiber ori-
entations obtained with 3D-PLI at 1.3-mm in-
plane resolution (i.e., single axons) with 1013 
spins would result in a storage demand of 3.2 
petabytes and decades of computation. This 
is not possible with current petascale tech-
nology but can be accomplished with future 
exascale computing power, that is, computers 
capable of executing 1018 floating point op-
erations per second (i.e., 1 exaflop). Handling 
such large datasets, however, creates massive 
computational demands at the level of input-

output. More efficient input-output proce-
dures and algorithms are emerging, which 
should help, but the computational chal-
lenges are still extraordinarily high. 

The computational requirements also in-
crease further when cellular and axonal in-
formation is linked to other dimensions of 
brain organization, for example, the molecu-
lar architecture, which is regionally specific 
and key for signal transduction. Similarly, 
requirements further increase when adding 
temporal changes to simulate cell activity, 
plasticity, or network function, to name a few 
examples. When developing more biologi-
cally realistic brain models, it is relevant to 
consider not only the regional segregation of 
the brain but also the laminar and sublami-
nar features with their specific cell numbers, 
anatomical and physiological properties, and 
distributions (14). Likewise, computer simu-
lations of the human brain that are based on 
more realistic models that account for ana-

tomical and physiological constraints must 
be scaled accordingly.

These endeavors set requirements for 
high-performance computing technology. 
For example, neuroscientific use cases be-
come dependent on scalable workflows, 
starting from the extraction of multimodal 
datasets stored in data repositories to their 
preprocessing, simulation, visualization, and 
analysis, using machine and deep learning 
even more. The computation of the compo-
nents of such workflows will benefit from 
modular and interactive concepts of future 
supercomputing, such as those developed 
in the European Deep Projects. In a modu-
lar supercomputing architecture, specialized 
computing modules are integrated to form a 
deeply connected hardware architecture and 
can be used coherently with each module 
that is best suited for a particular component 
of the workflow (15). This includes modules 

as diverse as central processing unit (CPU) 
clusters, GPU boosters, field-programmable 
gate array modules for data analytics, neuro-
morphic systems, extreme storage modules, 
and, in the future, quantum computers and 
annealers. In addition, there is a growing 
need for neuroscience workflows that re-
quire interactive supercomputing—for ex-
ample, to visualize intermediate results and 
correct parameter settings before proceed-
ing—and that rely on the interactive use of 
software such as Paraview.

The big data challenge in neuroscience 
demands technical solutions for storing 
data (in the terabyte to petabyte range) that 
are simultaneously available to the broader 
community through the cloud. This requires 
transparent data transfer from object-ori-
ented cloud storage systems to exabyte-scale 
parallel file systems of the supercomputer. 

The Allen Brain Institute provides a plat-
form for neuroscientists and makes available 

a large number of image stacks reflecting 
multiple aspects of brain organization from 
different species— including Drosophila, ze-
brafish, mouse, and human—as well as tools 
for visualization, uploading, and download-
ing (BigNeuron; www.alleninstitute.org/
bigneuron/data/). The Human BioMolecular 
Atlas Program aims to develop an open and 
global platform to map healthy cells in the 
whole human body, an endeavor that is ac-
companied by considerable big data and com-
putational challenges. In Europe, the Human 
Brain Project has developed EBRAINS to 
provide a large spectrum of research instru-
ments, data, and related services—with a fo-
cus on human, rat, and mouse brains—that 
are linked to each other and is enabling cloud 
access to interactive supercomputing, web-
based visualization and analysis, and high-
end simulation and data services through 
Fenix. This platform was jointly built by 
neuroscientists and developers based on 
research needs such as running large-scale 
simulations or 3D-reconstructions and ana-
lyzing brain models. Fenix was designed as 
a general infrastructure-as-a-service plat-
form, including Europe-wide authentication 
services to enable access for many research 
communities. Sharing data, methods, and re-
search instruments in the neuroscience com-
munity and federating services across differ-
ent communities can leverage the immense 
associated methodological and resource in-
vestments, which in turn is fundamental to 
develop new diagnostic tools and therapies 
in brain medicine. Undoubtedly, cloud-based 
supercomputing and distributed, collabora-
tive research platforms will play an increas-
ing role in neuroscientific research to better 
understand brain complexity. j
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Big data from human brain research
The size of data is exponentially growing according to the resolution of data on the human brain connectome 
and organization. The largest datasets are estimated sizes because such data do not exist for the human brain. 
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